
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  
Int. J. Optim. Civil Eng., 2020; 10(1):155-180 

 
 
 

IMPERIALIST COMPETITIVE LEARNER-BASED 
OPTIMIZATION: A HYBRID METHOD TO SOLVE 

ENGINEERING PROBLEMS 
 

M. Shahrouzi*, † and A. Salehi 
Civil Engineering Department, Faculty of Engineering, Kharazmi University, Tehran, Iran 

 
ABSTRACT 

 
Imperialist Competitive Algorithm, ICA is a meta-heuristic which simulates collapse of 
weak empires by more powerful ones that take possession of their colonies. In order to 
enhance performance, ICA is hybridized with proper features of Teaching-Learning-Based 
Optimization, TLBO. In addition, ICA walks are modified with an extra term to intensify 
looking for the global best solution. The number of control parameters and consequent 
tuning effort has been reduced in the proposed Imperialist Competitive Learner-Based 
Optimization, ICLBO with respect to ICA and several other methods. Efficiency and 
effectiveness of ICLBO is further evaluated treating a number of test functions in addition to 
continuous and discrete engineering problems. It is discussed and traced that balancing 
between exploration and exploitation is enhanced due to the proposed hybridization. 
Numerical results exhibit superior performance of ICLBO vs. ICA and a variety of other 
well-known meta-heuristics. 
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1. INTRODUCTION 
 

Optimization is the process of searching for a vector in a design domain that makes the best 
solution among a large number of possible feasible alternatives. Emerging with several 
fields of science and engineering, it is a challenging task to choose and tune the right 
algorithm for a specific problem. As indicated in the no-free-lunch theorem, a specifically 
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tuned algorithm is not the best for all the problems [1]. The matter declares why new 
methods are still being developed after a century of research in optimization. The choice of 
an algorithm may depend on the type of design variables, objective function and its 
constraints.  

Meta-heuristic algorithms constitute a well-known branch of stochastic search; that 
mostly apply zero-order function sampling. They can be classified into different categories 
based on the source of inspiration. The main category is the biology-inspired algorithms, 
which generally use biological evolution and/or collective behavior of animals as their 
models [2]. Natural lows in science form another source of inspiration; they include physics 
and chemistry based algorithms. Moreover, art-inspired algorithms have been successful for 
global optimization. These are generally inspired by the creative behavior of artists such as 
musicians and architects. Social behavior is another source of inspiration that a category of 
meta-heuristic methods apply in order to solve optimization problems. 

Meta-heuristic algorithms are well capable to extract information from a set of solutions 
and approach the global optimum of practical problems in reasonable time. During the 1960s, 
a pioneering category of optimization methods were highlighted within the Genetic Algorithm 
(GA) [3] by idealizing the evolution theory. Since then, many other meta-heuristics have 
emerged, such as Differential Evolution (DE) [4], Particle Swarm Optimization (PSO) [5], 
Harmony Search (HS) [6–8], Biogeography-Based Optimization (BBO) [9], Colliding Bodies 
Optimization (CBO) [10], Teaching–Learning-Based Optimization (TLBO) [11], Stochastic 
Directional Search[12], Interior Search Algorithm (ISA) [13], Symbiotic Organisms Search 
(SOS) [14], Water Evaporation Optimization [15], Opposition-Switching Search [16], 
Vibrating Particles Search[17] and Dragonfly Algorithm [18]. 

It has been of research interest to develop new methods with improvements in terms of 
computational and time complexity [19–21]. A well-experienced approach to achieve such a 
goal is to hybridize powerful features of distinct algorithms for a set of problems in hand 
within a new framework [22,23]. The present work concerns improvement of ICA as a 
widely used meta-heuristic in a variety of problems [24,25]. ICA is further enhanced via 
hybridization by some features of DE and TLBO to develop a new algorithm called 
Imperialist Competitive Learning-Based Optimization; ICLBO.  

Remainder of this article is organized as follows. Section 2 describes ICA and TLBO in 
brief. Theoretical basis and algorithm of ICLBO are presented in Section 3. Consequently, 
performance of the proposed algorithm is evaluated by several benchmarks in Section 4 via 
comparison with the other methods. Finally, the present study is concluded in Section 5. 

 
 

2. PRILIMINARY 
 
Imperialist Competition or Colonial Competitive Algorithm was introduced by Atashpaz-
Gargari and Lucas [24], and it has been successfully applied to a variety of engineering 
problems [26–31]. However, due to considerable number of control parameters, ICA 
requires computational effort to tune them for each specific problem. In contrary, reduced 
number of parameters is of practical interest to avoid burdensome tuning efforts [11,32]. 
ICA and TLBO are briefly reviewed in this section prior to hybridization within framework 
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of the newly developed ICLBO. 
 
2.1 Imperialist competitive algorithm 

Imperialism is the policy of extending the power and rule of a government beyond its own 
boundaries. A country may attempt to dominate others by direct rule or by less obvious means 
such as a control of markets for good or raw material. In its initial forms, imperialism was just 
a political control over other countries in order to use their resources. In some cases, the reason 
for controlling another country is just preventing the opponent imperialist form taking 
possession of it. Such a social process is numerically simulated via ICA as introduced by [24]. 

According to ICA, any candidate solution vector in the design space is analogous to a 
country in the world. Countries are distinguished in two types based on the power score of 
them; that is colonies and imperialists. An empire consists of an imperialist together with its 
possessed colonies. In another word, some of the best countries in the population are 
selected as imperialists and the rest form colonies of such imperialists. 

ICA starts with an initial population of countries forming a prescribed number of 
empires. All colonies of initial population are divided among the aforementioned 
imperialists based on their power. After assigning each colony to an imperialist, it starts 
moving toward its relevant imperialist. The total power of an empire depends on both the 
power of the imperialist and that of its associated colonies. 

Afterwards, imperialistic competition takes places resulting in a gradual improvement in 
total score of more powerful empires meanwhile decreasing score of the weaker ones. The 
weakest empire iteratively loses its power until it finally collapse. Such a process is repeated 
with the remaining empires. The movement of colonies toward their relevant imperialists 
along with competition among empires and also the collapse mechanism will hopefully 
cause all the countries to converge into one empire possessing all the other countries as its 
colonies. The imperialist country in such a final empire is announced as the optimal 
solution. Procedure of the aforementioned ICA in a fitness maximization form can be 
summarized as follows: 

Step 1: Initialize Nimp number of empires over randomly positioned Npop countries after 
evaluating their fitness or cost function. 

Step 2: In each empire, move every colony toward its relevant imperialist by: 
 

( 1)New Col impX X rand X              (1) 

 
where β is a control parameter greater than 1, Nimp  stands for the empire position. Xcol and 
Xnew are the current and new positions of the colony, respectively. The function rand 
generates uniform distributed random numbers between 0 and 1.  

Step 3: If there is a colony with lower cost (fitter) than the imperialist, exchange their 
position within the corresponding empire. 

Step 4: Compute the total cost and power for each empire by the following relations: 
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where k is a positive number less than 1, Nimp denotes the number of empires, Pimp is the 
power of each empires, Timp and NTimp are the total fitness and normalized total fitness of 
each empires, respectively.    

Step 5: Transfer the worst colony from the weakest empire it into the empire that has the 
most likelihood based on Pimp to possess it. 

Step 6: Eliminate the powerless empires. 
Step 7: Loop from Step 2 until termination criterion is satisfied; that is completing a 

prescribed number of function evaluations NFEmax . 
According to the above relations, ICA has control parameters of  NFEmax , β , Nimp , k and 

Npop. 
 
2.2 Teaching learning based optimization 

Teaching–Learning-Based Optimization (TLBO) is of research interest among other 
parameter-less algorithms due to its simplicity and efficiency [33–36]. It has two distinct 
phases of position updating for any search agent known as a classmate. They are the teacher 
phase and the learner phase. The teacher phase simulates upgrading the mean grades of the 
classmates by means of their best; called the teacher. That is while the classmates interact 
each other in the learner phase.  

Like many other meta-heuristics TLBO provides some diversification and intensification 
operators. Not only the initial population but also every pair of classmates in the learner 
phase are selected randomly to provide the diversification. In contrary, averaging the already 
found information of classmates and moving toward their best constitute intensification in 
the teacher phase. It is further improved by selection of the fittest among each pair of 
solutions in the learner phase. A standard algorithm of TLBO can be concerned within the 
following steps: 

Step 1: Initialization; randomly generate a prescribed number of classmates within the 
design space and identify their best as the teacher after evaluation of such a population. 

Step 2: Repeat for the teacher phase and the learner phase for a prescribed number of 
iterations Itermax and each of the classmates as follows: 

Step 3: Teacher phase: 
- For every classmate, X, generate a candidate new position; Xnew  by: 
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( . )New Teacher MeanX X rand X Tf X           (5) 

 
where Tf is an integer scale which randomly switches between 1 and 2. 
- Evaluate Xnew  
- Replace X with Xnew if Xnew is better than it. 

Step 4: Learner phase:  
- Randomly select two distinct classmates; Xi and Xj 
- If Xj is better than Xi then s=+1 otherwise s=-1  . Then generate Xnew by: 

 

( )New j iX X rand s X X                                          (6) 

 
- Evaluate Xnew  
- Replace X with Xnew if Xnew is better than it. 

Step 5: Termination; as soon as  NFEmax function calls is completed exit the loop and 
announce the updated teacher as the optimal solution. 
 
 

3. THE PROPOSED HYBRID ALGORITHM 
 

ICA can be distinguished from several other meta-heuristics due to its special way of 
employing dynamic-size subpopulations and then collapsing them into one empire. In 
another word, it provides delayed transfer from distributed search of the design space via 
these subpopulations toward the global search within the final empire. Having several 
control parameters enables fine tuning of the algorithm, however, in charge of extra 
computational effort that is a practical challenge. 

In contrary, TLBO has no parameters rather than population size and NFEmax as the least 
critical ones. Such a feature is of practical interest, however, may avoid TLBO from 
achieving the best search refinement in various problems.   
Here, some operators of ICA and TLBO are properly hybridized to take advantageous of 
both the methods in developing a more powerful algorithm; that is called Imperialist 
Competitive Learner-Based Optimization, ICLBO. This algorithm is introduced via the 
following steps: 

Step 1: Initialization; generate Npop randomly positioned countries and distribute them via 
Nimp= Npop /5 empires.   

For each empire do:  
Step 2: Walking Phase:  

- evaluate fitness or cost of countries and identify their best as imperialist of that empire 
- move any colony except the imperialist by the following relation: 

 

( ) ( )New imp TeacherX X rand X X rand C X X                 (7) 

 
where  XTeacher stands for the best country among all the empires while Ximp  denotes the best 
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of the current empire. The scaling factor, C, linearly varies from 1 to 0 via iterations as 
 

1 ( 1) ( 1)maxIterC Iter              (8) 

 
- Evaluate Xnew  
- Replace X with Xnew if Xnew is better than it. 

Step 3: If there is a colony with lower cost (fitter) than the imperialist, exchange their 
position within the corresponding empire. 

Step 4: Compute the total cost and power for each empire by Equations (9) to (11). 
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Step 5: Learner phase:  

- Randomly select two distinct classmates; Xi and Xj 
- If  Xj is better than Xi then s=+1 otherwise s=-1  . Then generate Xnew by: 

 

( )New j iX X rand s X X                                    (12) 

 
- Evaluate Xnew  
- Replace X with Xnew if Xnew is better than it. 

End for 
Step 6: Transfer the worst colony from the weakest empire it into the empire that has the 

most likelihood based on Pimp to possess it.  
Step 7: Eliminate the powerless empires. 
Step 8: Loop from Step 2 until termination criterion is satisfied; that is reaching a 

prescribed number of iterations; Itermax or a prescribed number of function evaluations NFEmax. 
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Figure 1. Flowchart of the proposed ICLBO 

 
As can be realized, ICLBO hybridizes a local search (walking toward the imperialist in 

each empire) with a global search (moving toward the global best among all of the empires). 
Besides, a self-tuning strategy is utilized by variation of scaling factor in Eq.8 to control 
balance of such local and global search walks. Embedding the learner phase as another 
hybridization strategy is expected to provide additional search refinement; it is further 
evaluated via numerical tests.  As an interesting feature in the proposed ICLBO, the control 
parameters have practically been reduced to NFEmax and Npop ; just as TLBO. Fig.1 reveals 
flowchart of ICLBO. 
 
 

4. NUMERICAL SIMULATION 
 

In this section, the proposed method was tested through an array of experiments. Numerical 
simulation is performed via two parts. The first part, deals with benchmark test functions 
while in the second part, constrained engineering optimization problems are treated. 
 
4.1 Benchmark mathematical functions 

The employed test functions to be minimized are concerned within three general categories; 
i.e. unimodal, multimodal and fixed-dimension multimodal functions. These benchmark 
functions are described in Tables 1, 2 and 3. 
 



M. Shahrouzi and A. Salehi 

 

162 

Table 1: Unimodal benchmark functions 

Function Dim Range 

   2 2 2

1 1 1 1

2

1 (2 )

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   
d

i

i

f x x i x x  5 [-10,10] 
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2 22

2 1

1

[100 1 ]






   
d

i i i

i

f x x x x  5 [-5,10] 

  2 2

3

1

( )

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d

i

i

f x x  5 [-100,100] 

  5 4 3 2

4

1

3 4 2 10 4


     
d

i i i i i

i

f x x x x x x  5 [-10,10] 

  4

5

1
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d

i

i

f x x  5 [-10,10] 

 
In all experiments, Npop and NFE are set to 50 and 1000, respectively. Extra control 

parameters of each algorithm are given in Table 4. To achieve more reliable results, 30 
independent runs are performed by every method for each benchmark problem. Comparison 
of performance is made between PSO, GA, ICA, DE, CBO, TLBO, SOS and the proposed 
ICLBO; whereas the last five are treated as parameter-less methods. 

 
Table 2: Multimodal benchmark functions 

Function Dim Range 

  2

6

1 1

1 1
20 exp 0.2 exp (2 ) 20
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In the test functions, constraints are limited to bounds on the design variables. They are 

called side-constraints [37]. Consequently, for such mathematical test functions, the problem 
is formulated as: 
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( )

Subject to

Minimize f X

L X U 
          (13) 

 
- During optimization, any design vector Evaluate X is forced to fall within the range 

described by L and U vectors as the lower and the upper bounds, respectively.    
It is worth notifying that the employed variant of DE, in every iteration selects the best of 

every current search agent X and its moved state; Xnew given by: 
 

( ) ( )New j i gbX X rand X X rand X X                      (14) 

 
in which Xgb denotes the global best already-found solution while Xi and Xj stand for two 

randomly chosen members out of the current population of search agents.  
Intrinsic parameters of PSO; i.e. c1, c2 and c3 denote the inertial, cognitive and social 

factors, respectively. They arise in the following velocity updating relation according to 
standard PSO: 

 

1 2 3( ) ( )New pb gbV c V rand c X X rand c X X                     (15) 

 
where Xpb introduces the previous best position of each particle with the current position X 
and velocity V. The new position for any such particle is thus calculated as. 
 

 new newX X V             (16) 

 
A key feature in a meta-heuristic algorithm is how it controls diversity of the population 

during the search. To declare it, a Diversity Index, DI, is traced as defined by the following 
relation: 

( )j

j
j j

SD
DI mean

U L



          (17) 

 
where stands for the standard deviation of the population members in the jth design variable. 
The vectors L and U denote the upper and lower bounds, respectively. 

Functions F1~F5 are unimodal and they have just one global optimum. Therefore, they 
are employed to compare exploitation capability of the treated algorithms. In contrary, 
multimodal functions include several local optima whose number increases exponentially 
with the problem size (number of design variables). These functions can thus be used to 
evaluate exploration capability of the optimization methods. 

Tables 5 and 6 reveal comparisons over the best and average of final results, respectively. 
The values are normalized to the optimal result of each function and the most desired ones 
for each test function are highlighted. 

 
 



M. Shahrouzi and A. Salehi 

 

164 

Table 3: Fixed-dimension multimodal benchmark functions 

Function Dim Range 

          2 2

11 1 2 1 2
cos cos     expf x x x x π x π  2 [-100,100] 

     
5 5

12 1 2

1 1
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   
   
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             2 2 2

13 1 2 2 1 1 2
exp 1 cos cos exp 1 sin     f x sin x x x x x x 2 [-2π, 2π] 
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14 1 2 1 2 1 2

3 5
1

2 2
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1

2

1.5 4.0

3.0 3.0

x

x

  
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         4 6 4 8

15 1 2 2 3 3 4 1
100 tan       expf x x x x x x x x  4 [-1,1] 

 
Table 4: Specific control parameters of the treated algorithms 

Algorithm Parameters Algorithm Parameters 

PSO 21 3
1, 2, 2C C C    CBO -- 

GA 0.1, 2
m

P b    TLBO -- 

ICA 4, 0.5k   SOS -- 

DE -- ICBLO -- 

 
Table 5: The best results for the test functions by various algorithms 

 PSO GA ICA DE CBO TLBO SOS ICLBO

F01 9.37 3.46 3.33 1.50 604.47 17.46 4.52 1.00
F02 2.34 1.98 1.15 1.04 1.28 1.55 1.23 1.00
F03 51934.90 119.42 56.48 14.74 218488.18 3004.77 54.20 1.00
F04 11.56 5.14 1.71 1.37 844.66 2.76 1.46 1.00
F05 5406.60 30.13 40.71 6.38 238718.13 248.87 78.69 1.00
F06 3.04 1.00 1.84 2.11 2.55 1.86 2.12 1.90
F07 3.81 1.00 2.26 2.80 3.99 2.12 2.77 2.33
F08 1.30 1.15 1.16 1.19 1.48 1.12 1.06 1.00
F09 183855 148.42 9206 19272.00 1.00 15546.1 28444.00 13783.66
F10 2.99 1.34 2.23 2.66 1.00 1.87 1.33 2.00
F11 1.03 2.62 1.00 1.02 2.62 2.62 1.01 1.00
F12 1.10 1.00 1.00 1.00 1.13 1.02 1.00 1.00
F13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F14 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00
F15 3.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00

 
According to Table 5, in majority of test functions ICLBO has achieved the first rank in 
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capturing global optima with considerable superiority over some other treated methods.  The 
matter is confirmed not only for the final results but also during the search by Fig. 2; that 
reveals the best results for F3, F8 and F12 as samples of unimodal, multimodal and fixed-
dimension classes of test functions, respectively.  

O
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n

 
(a) (b) (c) 

Figure 2. The best results of various algorithms for the functions (a) F3, (b) F8 and (c) F12 
 

Table 6: Mean optimization results in the treated test functions 

  PSO GA ICA DE CBO TLBO SOS ICLBO 
F01 265.66 1.01 9.00 8.58 222.18 53.07 14.06 1.00 
F02 5.37 1.01 1.37 1.24 9.65 2.20 1.14 1.00 
F03 1420. 1.00 42.51 23.01 1903.00 359.53 26.25 57.67 
F04 15.11 1.58 1.44 1.26 418.50 2.31 1.40 1.00 
F05 1140.9 1.00 280.23 23.73 28243.00 413.57 31.52 42.42 
F06 3.22 1.00 2.17 2.47 3.90 2.31 2.42 2.29 
F07 3.96 1.00 3.11 3.30 4.07 3.19 3.44 3.12 
F08 1.17 1.12 1.05 1.16 1.34 1.10 1.01 1.00 
F09 1286.4 1.00 17.71 68.80 1362.80 48.94 89.84 53.06 
F10 2.01 1.00 1.49 1.67 2.33 1.52 1.37 1.40 
F11 1.00 2.00 1.27 1.14 2.00 2.00 1.25 1.21 
F12 1.34 1.16 1.11 1.04 1.61 1.37 1.01 1.00 
F13 1.01 1.01 1.00 1.01 1.14 1.01 1.00 1.00 
F14 1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00 
F15 1909.2 1.00 1.00 177.98 73.60 1.00 188.10 355.77 

 

 
(a) (b) (c) 

Figure 3. Mean results of various algorithms for the functions (a) F3, (b) F8 and (c) F12 
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Comparing the mean results in Table 6, it is realized that ICLBO has still the first rank 

treating F1, F2, F4, F8, F12~F14; i.e. 7 out of 15 functions. Although, ICLBO is not the best 
for the other functions; it has revealed competitive mean results among the treated methods. 
Fig. 3 shows that ICLBO has achieved lowest mean results for F8 and F12. GA has stood on 
the first rank for F3 but at the 4th and 7th for F8 and F12, respectively. Such an observation 
confirms that no single algorithm is the best for all the problems; as predicted by no-free-
lunch theory. 

Tracing DI history vs. NFE provides reasoning for difference in behavior of the 
algorithms so that some got trapped in local optima but the others had better search 
refinement. As evident from Fig. 4, DI of algorithms like PSO fluctuate or even increase 
during the search; while some others generally exhibit a decreasing trend. Comparing such 
DI variation with the results of Fig. 2 and Fig. 3 for the same functions; it is found that the 
best performance belongs to the methods which have proper balance between diversification 
(high DI) and intensification (vanishing DI). For example, too rapid decrease in DI has 
resulted to standard CBO get trapped in local optima. In contrary, fluctuating about a 
relatively high DI by PSO has avoided it from proper search refinement. It is while some 
other methods like ICLBO has maintained DI in a lower level after an early decrease in this 
value. The matter provides reasoning for observations in Fig. 2 and Fig. 3; that ICLBO has a 
high convergence rate at early iterations and continued search refinement while it progresses 
toward final results. In another word, it has more exploration (diversity) in the early stages 
of the search to widely access the design space. However, when the valley of global 
optimum is found, excessive divergence from it should be avoided to have better search 
refinement. 

 

 
(a) (b) (c) 

Figure 4. DI history of various algorithms for the functions (a) F3, (b) F8 and (c) F12 
 
4.2 Constrained engineering problems 

In this section, performance of ICLBO is evaluated by treating a number of constrained 
optimization problems that are widely used as benchmarks in literature. Definitions for the 
first set of engineering problems are provided in the Appendix. For the sake of true 
comparison, Npop and NFEmax for majority of the treated examples are fixed to 50 and 5000, 
respectively. In addition, effectiveness of the proposed ICLBO is also shown via comparison 
with literature results for each example. Formulation of the constraint problem is converted 
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to the following fitness maximization form: 
( ) (X)

where (X) ( ) (1 max(0, ( )) )k
k

Max F X

f X g X



 

 

   
     (18) 

 
ϕ( ) is the penalized objective function and F( ) stands for the fitness to be maximized. 

Any kth constraint is denoted by g( )and X stands for the design vector. The penalty 
coefficient η is set to 100 in the present study.  

 
4.2.1 Tension/compression spring design  

The tension/compression spring design problem is described by Arora for which it is aimed 
to minimize the weight f(x) of a spring subject to constraints on deflection, shear stress, 
surge frequency, outside diameter and geometrical design variables [37]. As depicted in 
Fig. 5, the design variables <x1 , x2 , x3> are the wire diameter: d, mean coil diameter: D and 
the number of active coils: n, respectively. 
 

 
Figure 5. Tension/compression spring design problem 

 
According to Table 7, it is evident that ICLBO has outperformed the other algorithms in 

the best results. Regarding the mean results, ICLBO has stood at the second rank after 
TLBO.  

 
Table 7: Results of the present work for tension/compression spring design problem 

 PSO GA ICA DE CBO TLBO SOS ICLBO 

X1 0.0580 0.0722 0.0500 0.0708 0.0648 0.0538 0.0636 0.0515 

X2 0.5264 0.677 0.3147 0.8519 0.7557 0.4083 0.6429 0.3528 

X3 6.2919 10.553 15.000 3.7893 3.0194 9.0042 5.3580 11.5214 

Best 0.0146 0.0444 0.0133 0.0247 0.0159 0.0123 0.0191 0.0126 

Mean 0.0549 0.044 0.0690 0.1938 0.0205 0.0139 0.1486 0.0129 

 
Table 8 compares the results obtained by ICLBO with those reported in literature. It is 

worth notifying that the proposed ICLBO has achieved the optimum f*=0.01266 with just 
5000 function evaluations while such NFE is 7650 for MBA to obtain the same result and is 
more for the other methods. HPSO has found f*=0.01266 in charge of spending NFE= 
81000. ICLBO has captured such a global optimum by NFE =11000; that shows its superior 
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efficiency over the others. 
 

Table 8: Comparison of ICLBO results with literature works for tension/compression spring 

 MBA [38] HPSO [39] WOA [40] GSA [41] ICLBO 
X1 0.0516 0.0517 0.0512 0.0502 0.0515 
X2 0.3559 0.3571 0.3452 0.3236 0.3528 
X3 11.3446 11.2650 12.0040 13.5254 11.5214 

Best 0.01266 0.01267 0.01267 0.01270 0.0126 

 

 
Figure 6. Welded beam design problem 

 
4.2.2 Welded-beam design  

This problem is an engineering benchmark introduced by Coello [42]; in which, a welded 
beam is designed for minimum cost subjected to constraints on maximal shear stress (τ), 
bending stress (σ) in the beam, buckling load on the bar (Pb), deflection of the beam end (δ) 
and side constraints. Four continuous design variables are considered for this problem as 
shown in Fig.6; including x1=h, x2=l, x3=t and x4=b.  
 

Table 9: Results of the present work for welded beam design problem 

PSO GA ICA DE CBO TLBO SOS ICLBO 
X1 0.2220 0.2590 0.1736 0.1939 0.2052 0.2042 0.1912 0.2049 
X2 3.3738 4.8213 4.8411 3.6672 5.1358 3.3172 4.6770 3.4600 
X3 9.1788 7.0814 9.9110 9.2225 9.1542 10.00 8.5366 9.1125 
X4 0.2343 0.3688 0.2026 0.2121 0.2052 0.2045 0.2398 0.2057 

Best 1.9810 2.7224 1.9814 1.81504 1.9677 1.8566 2.0280 1.7315 
Mean 2.1833 3.5824 3.1754 1.9738 2.5698 1.9777 2.1735 1.9648 
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Table 10: Comparison of ICLBO results with literature works for welded beam design problem 

 MBA [38] HPSO [39] WOA [40] GSA [41] ICLBO 
X1 0.2057 0.2057 0.2057 0.1821 0.2049 
X2 3.4705 3.4705 3.4842 3.8569 3.4600 
X3 9.0366 9.0366 9.0374 10.0000 9.1125 
X4 0.2057 0.2057 0.2062 0.2023 0.2057 

Best 1.7248 1.7248 1.7304 1.8799 1.7315 

 
Table 9 indicates that in the present work by spending NFE=5000 ICLBO has been 

competitive to the others both in the best and mean results. However, such NFE is not 
sufficient to capture the global optimum of this example as reported in literature. Increasing 
NFE, ICLBO could capture the same global optimum as MBA and HPSO, reported in Table 
10. 

 
4.2.3 Tubular-column design 

Fig. 7 illustrates an example for designing a thin-wall tubular column to carry a compressive 
load P at minimum cost [43]. The wall thickness and mean diameter forms two design 
variables of this problem while behavior constraints are applied at both buckling and 
yielding stress. In the present work, various methods are compared to solve the problem by 
NFE of 5000. Table 11 gives the corresponding results declaring that ICLBO has the first 
rank not only for the best but also the mean result. It is also evident from Table 12 that the 
result of ICLBO for this example has been better than the other literature works. 
 

Table 1: Results of the present work for tubular column design 

PSO GA IC DE CBO TLBO SOS ICLBO 
X1 5.4743 5.6988 5.4298 5.4781 5.4813 5.4608 5.4540 5.4511 
X2 0.2909 0.3193 0.2955 0.2905 0.2904 0.2918 0.2927 0.2921 

Best 26.5522 29.2302 26.5846 26.5539 26.5604 26.5374 26.5528 26.5039
Mean 26.8275 29.2302 26.9666 26.8731 27.4417 26.7295 26.7614 26.5300

 

 
Figure 7. Tubular column design 
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Table 2: Comparison of ICLBO results with literature works for tubular column design 

 CS [44] NLP [43] ICLBO 
X1 5.4513 5.44 5.4511 
X2 0.2919 0.293 0.2921 

Best 26.5321 26.5321 26.5039 

 
4.2.4 Gear-train design  

Gear-train design represents an unconstrained integer optimization. This problem has four 
integer variables as introduced by Sandgren [45]. The objective is to minimize the gear ratio 
cost in the gear train of Fig. 8 to transfer rotation from the driver, D, to the follower gear, F. 
 

 
Figure 8. Gear train design 

 
According to Table 13, the present algorithm is one of the two methods among 8 that 

captured global optimum of this example. Table 14 reveals extra results by other literature 
works. It is worth mentioning that such global optimum is found by ICLBO with of 
NFE=4300 while the best computational effort among the other methods is NFE =5000 by 
CS [44]. 

 
Table 13: Result for gear train design 

PSO GA ICA DE CBO TLBO SOS ICLBO 

X1 53 56 60 54 51 51 49 49 
X2 20 18 37 22 26 30 19 19 
X3 13 16 14 17 15 13 16 16 
X4 34 34 60 48 53 53 43 43 

Best 2.3E-11 4.E-05 1.5E-07 1.1E-10 2.3E-11 2.3E-11 2.7E-12 2.7E-12 

Mean 3.1E-08 4.8E-05 1.6E-06 1.5E-08 7.9E-08 1.5E-09 2.2E-09 1.8E-09 
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Table 14: Comparison of ICLBO results with literature works for gear train design 

 ABC [46] ALO [47] MBA [38] CS [44] ICLBO 
X1 19 43 43 49 49 
X2 16 19 19 19 19 
X3 44 16 16 16 16 
X4 49 49 49 43 43 

Best 28.7E-12 2.70E-12 2.70E-12 2.70E-12 2.70E-12 

 
4.2.5 120-bar truss design 

As a well-known real-size problem, 120-bar dome of Fig. 9 is considered for sizing design. 

Material properties include density: 30.288 /lb in  , elasticity modulus: 30450E ksi  

and yield stress: 58yF ksi . The structural members are divided into 7 groups where the 

design variables are confined within 0.775 to 20.000 in2. Gyration radii are taken 

intermediate variables depending on member areas by 0.67770.4993r A . Structural loading 

consists of 13.489 (60 )kips kN  at node 1, 6.744 (30 )kips kN at nodes 2 to 13 

and 2.248 (10 )kips kN  at the other free nodes. A number of investigators [48, 49] has 
addressed optimal design of this structure. Here, it is treated for weight minimization under 
stress constraints due to allowable stress design provisions of Iranian code of steel design 
[50] as follows: 

 
 0.6allowable

tension yF                                               (19) 
2

2
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2 3
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where 
22

c
y

EC F


 
and lk r  stands for the member slenderness ratio. The effective 

length factor is denoted by k, where l and r denote the member length and section gyration 
radius, respectively. A penalty approach is applied to avoid constraint violation. 

Performance of the proposed ICLBO in optimal design of 120-bar truss is compared with 
other literature works in Table 15. The best result of ICLBO via 30000 analyses, is superior 
to HS and competitive with the others; however, the mean result of CBO is better. Fig. 10 
shows that ICLBO has successfully activated stress constraint for this three-dimensional 
example.  
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Figure 9. 120-bar dome [49] 

 

 
Figure 10. Satisfied stress constrained in the best result of ICLBO for 120-bar dome  
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Table 15: Comparison of the results for 120-bar dome design  

 HS [48] HPSACO [21] RO [51] CBO [49] ICLBO 
A1 3.295 3.311 3.128 3.123 3.124 
A2 2.396 3.438 3.357 3.354 3.454 
A3 3.874 4.147 3.874 4.112 4.113 
A4 2.571 2.831 4.114 2.782 2.786 
A5 1.150 0.775 0.775 0.775 0.775 
A6 3.331 3.474 3.302 3.300 3.573 
A7 2.784 2.551 2.453 2.446 2.446 

Best (lb) 19707.8 19491.3 19476.2 19454.7 19680.6 
Mean (lb) - - - 19466.0 23661.0 

 

 
(a) 

 
(b) 

Figure 11. 1104-bar helipad structure: a) top view, b) side view 
 

4.2.6 1104-bar truss design 

A practical large-scale example is introduced here; with continuous variables. The helipad 
geometry is shown in Fig. 11; whereas its weight is to be minimized under both stress and 

displacement constraints. Material properties include density of 37850 /kg m  , elasticity 
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modulus of 203.9E GPa  and yield stress of 253.1Fy MPa .  

Uniform gravitational load of 2300 /kgf m is exerted on the top level of helipad. In 

addition, concentrated load of 350kgf is applied at each of four central nodes where the 
helicopter has to land. Stress constraints are applied due to Iranian design code regulations 

[50]; the same as previous example. Nodal displacements are limited to 5cm in each 
orthogonal direction. The structural weigh is penalized to avoid violation of both displacement 
and stress constraints. Both the structure and loading are symmetric and 9 group of member 

areas constitute the design variables confined between 210cm  and 2100cm .  
This example is solved by ICLBO vs. ICA as well as Lightening Attachment Procedure 

Optimization [52] and Bat Algorithm [53]. The former is applied using extra control 
parameters; including 2.0 for maximum loudness and frequency, 0.9 for the geometric decay 
factor. The other three are parameter-less algorithms that utilize population size of 50 and 
5000 analyses in each run.  

 
Table 16: Comparison of the results for 1104-bar helipad design  

 BA LAPO ICA ICLBO 
A1(cm2) 15.09 34.88 18.35 40.03 

A2 10.13 16.36 15.48 19.27 
A3 19.57 10.00 24.67 10.00 
A4 23.75 22.87 23.58 23.21 
A5 35.56 42.68 34.65 29.15 
A6 45.93 22.60 46.36 20.45 
A7 49.31 41.51 49.97 16.94 
A8 14.49 46.19 19.85 27.43 
A9 52.54 66.17 56.36 82.82 

Best (kg) 35520.62 36440.05 37191.50 32999.80 
Mean 47511.46 38020.01 43975.59 36781.07 
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(a)              (b) 

Figure 12. Satisfied constraints in the best result of ICLBO for 1104-bar truss: a) member 
stress ratios and b) nodal displacements (cm) 
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Table 16, gives the statistic results of the treated methods in this example. It is evident 
that ICLBO has superior performance over ICA both in the best and mean results. The 
results of ICLBO are also competitve with the other treated methods; exhibiting 
performance of the proposed hybrid method in optimal design of such a constrained large-
scale problem. Fig. 12 shows that ICLBO has sucessfully satisfied and activated the problem 
constraints. 

 
 

5. CONCLUSION 
 
In this study, proper features of TLBO as a popular parameter-less algorithm was hybridized 
with the framework of ICA; that acts like a multi-population meta-heuristic search. As a 
result, ICLBO was proposed as a more powerful stochastic search than either ICA or TLBO.  
It was declared that ICLBO is capable of capturing global optima in all treated 
unconstrained test functions. It could achieve the first rank compared with PSO, GA, ICA, 
DE, CBO, TLBO and SOS in the best and comparative performance in the mean results. The 
matter is supported by several independent runs.  

The conclusion stood reliable in constrained engineering problems for which the 
proposed method was better than the aforementioned algorithms; in either the best or mean 
results or even both. ICLBO could also find global optima as reported in the literature works 
with relatively lower computational effort in majority of the treated engineering 
benchmarks.  

A diversity index was introduced and traced in this study. As the first result, different 
behavior of meta-heuristic algorithms were distinguished. As the second, the reasoning for 
proper performance of ICLBO was provided. It is observed that ICA has a moderate 
decreasing trend of DI as the search progresses. In the other hand, TLBO may first increase 
and then decrease DI in a more accelerated manner. Hybridization of these two, via the 
novel ICLBO algorithm shows a DI drop in the early stages of the search followed by 
deserving a lower DI level up to the end. In another word, ICLBO first provides higher 
diversity to distribute its representatives among the entire search space, then it reduces 
diversity to allow better search refinement about already found solutions. Besides, it does 
not exhibit too rapid drops into zero diversity; as a key point to avoid premature 
convergence.  

Capability of ICLBO was also tested in two real-size problems; one with just stress 
constraints and the other with both stress and displacement limits. The proposed method was 
sucessful in activating the constraints of each problem. Meanwhile, the constraints were 
satisifed in such structural problems. The optimal design of ICLBO in such conditions were 
obtained competitve with the other methods. It is concluded that the proposed ICLBO has 
superior performance with respect to ICA and many other metaheuristics. In addition, it is 
implemented with reduced number of parameters that is interesting from practical point of 
view. 
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APPENDIX 
 

A.1. Tension/compression spring design problem 
Minimize 

    2
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A.2. Welded beam design problem 

 
Minimize 

   2
1 2 3 4 21.10471 0.04811 14f x x x x x x     

Subject to 
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where 
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A.3. Tubular column design problem 

 
Minimize 

 . 9.8 2d t df t d    

Subject to 

 

1

2

2 3 2 2

3

4

5

6

1 0

8
1 0

2.0
1 0

1 0
14
0.2

1 0

1 0
0.8

y

P
g

dt

PL
g

Edt d t

g
d
d

g

g
t
t

g

 



  

  


  

  

  

  

  

where 

6
2 2

2500  ,    500   ,  0.85 10     y

kgf kgf
P kgf E

cm cm
     

3
0.0025  ,    250   

kgf
L cm

cm
     

 



M. Shahrouzi and A. Salehi 

 

178 

A.4. Gear train design problem 
 

Minimize 
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